Working Title	Effect of vitamin D supplementation on hypertension and hypercholesterolemia in older Australian adults						
Date of plan	17 March 2023						
Person conducting analysis	Sabbir Rahman Mary Waterhouse	Email	sabbir.rahman@qimrberghofer.edu.au Mary.Waterhouse@qimrberghofer.edu.au				
Potential Authors	Sabbir Rahman, Hai I Romero, Catherine Ba Nina Na, Rachel O'C Penelope M Webb, Da	Pham, Mary axter, Dallas Connell, Tan avid C White	Waterhouse, Donald S A McLeod, Briony Duarte s R English, Peter R Ebeling, Bruce K Armstrong, aya Ross, Jolieke C van der Pols, Alison J Venn, eman, Rachel E Neale				
Background and	d objective						
Background	Hypertension and hy cardiovascular disease and 6% of population respectively, with the prevalence of these con- reported having head hypercholesterolemia. pharmacologic treatmend due to medications ¹⁰ and Vitamin D prevents rise it may reduce the risk to hypertension, it suf- important role in- endothelial/vascular fre- influence serum chol- element-binding proteen The results of epidern hypertension are incom- incident hypertension inverse association between the series in the series of the series o	percholester s. ^{1,2} In 2017 on) reported e prevalend nditions inc hypertension ⁴ Hypertens ent as well a nd lack of a ckets and ost of high blo ppresses re the renin– unction. ¹² The esterol, such in. ¹³ niological s clusive. A n ascertained	rolemia are the leading clinical risk factors for 7-18, 2.6 million and 1.5 million Australians (~11% 1 having hypertension and hypercholesterolemia, we being similar for males and females. ^{3,4} The reases with age; 45% of Australians aged \geq 75 years and 21% aged \geq 65 years reported ion and hypercholesterolemia can be managed by s by lifestyle modification. ⁵⁻⁹ However, side effects dherence to a healthy lifestyle are common. ¹¹ eomalacia, and evidence is emerging to suggest that of pressure or high blood cholesterol. With respect lease of renin from the kidneys, thus playing an angiotensin–aldosterone system, and improves here are a number of mechanisms by which it may as inhibiting the activation of sterol regulatory tudies regarding the link between vitamin D and heta-analysis of 11 cohort studies (8,397 people with 1 from self-reported questionnaires) suggested an a 25(OH)D concentration and hypertension; each 25				
	nmol/L increment in 2 of incident hypertensic found an inverse asso blood pressure (DBP), as SBP \geq 140 mm, D each 10% increase in g with changes of -0.29 m of hypertension (n= randomised controlled vitamin D reduces SB measurements are high not necessarily indica analysis, investigated medical professional). supplementation on the one study was small (1)	5(OH)D com on (heterogen ociation between systolic bloce BP \geq 90 mm genetically in mm Hg in D 142,255). ¹⁵ trials (RCT P or DBP. ¹⁴ nly variable, the effect of They did not be incidence N=74) and in	centration was associated with a 7% decrease in risk neity 62%). ¹⁴ A Mendelian randomisation study also ween serum 25(OH)D concentration and diastolic of pressure (SBP), and risk of hypertension (defined n, or current use of antihypertensive medications); nstrumented 25(OH)D concentration was associated PB, -0.37 mm HG in SBP and an 8.1% reduced odds In contrast, a meta-analysis (N=3810) of 27 s) found no evidence that supplementing adults with However, it is important to note that blood pressure so an elevated measurement in a research setting is pertension. Two RCTs, not included in the meta- of vitamin D on hypertension (as diagnosed by a ot find a statistically significant effect of vitamin D of hypertension, although the number of events in a the other the dose of vitamin D used was low. ^{16,17}				

	The effect of vitamin D supplementation on serum lipids is also unclear. Observational studies have shown that higher circulating 25(OH)D levels are associated with reduced total cholesterol (TC), low-density lipoprotein (LDL) cholesterol levels, and triglycerides, but not associated with high-density lipoprotein (HDL) cholesterol. ^{18,19} However, Mendelian randomisation analysis suggested a causal positive association between serum 25(OH)D concentration and HDL cholesterol only. ²⁰ A meta-analysis of 41 RCTs (3,434 participants; 1,699 people randomised to receive vitamin D supplementation) also reported similar effects of vitamin D supplementation on TC, LDL cholesterol, and triglycerides. ²¹ However, 24 trials were conducted specifically in people with diabetes or who were overweight or obese, the sample size was small in all trials (n<230), and the heterogeneity was high.
	Considering the limited evidence from large-scale RCTs, we aim to use data from the D-Health Trial, a large, population-based RCT for the prevention of all-cause mortality, to examine whether supplementing older Australians with monthly doses of 60,000 international unit (IU) of vitamin D_3 for 5 years alters the incidence of hypertension and hypercholesterolemia, using prescription of medication as a surrogate for diagnosis.
Specific objectives	1. To assess whether randomisation to monthly supplementation with 60,000 IU vitamin D ₃ or placebo has an effect on the
5	- incidence of treatment for hypertension (co-primary outcome)
	- incidence of treatment for hypercholesterolemia (co-primary outcome)
	 For each co-primary outcome, to investigate the effect of randomisation to supplementary vitamin D or placebo within subgroups of: age (<70, ≥70 years); sex; body mass index (BMI) (<25, 25 to <30, ≥30 kg/m²); predicted deseasonalised baseline serum 25(OH)D concentration (<50, ≥50 nmol/L); prevalent use of lipid-modifying agents (no, yes) (analysis of incident hypertension only); and prevalent use of hypertension medication (no, yes) (analysis of incident hypercholesterolaemia only).
Outcomes and	hypotheses
Instrument	We will use linked Pharmaceutical Benefits Scheme (PBS) records to determine whether/when participants started using medication to treat hypertension and/or hypercholesterolemia. PBS records provide information related to prescribed medication, including date of dispensing, drug name and item number, and anatomic therapeutic classification (ATC) codes. The details of ATC classes used in this analysis are listed in Table S1 (in Appendix C). Briefly, we will use the following ATC codes:
	For hypertension
	Main analysis ^a
	C08 Calcium channel blockers
	C09A and C09B Angiotensin-converting-enzyme (ACE) inhibitors
	CO3A Thiograde diverties
	Lu a sonsitivity analysis we will ADDITIONALLY include:
	CO9X Other agents acting on the renin-angiotensin system
	CUPA Other agents acting on the relini-anglotenshi system

	C03B, C03C, C03D, C03E and C03X Diuretics					
	C02 Antihypertensives ^b					
	C07 Beta-blocking Agents					
	For hypercholesterolemia					
	C10 Lipid-modifying agents					
	These outcome measures were developed in collaboration with a general practitioner.					
	^a This broadly follows the Heart Foundation of Australia 2016 guideline for the treatment hypertension, which says "thiazide diuretics, calcium channel blockers, ACE inhibitors or ARBs are suitable first-line drugs for the treatment of hypertension, either as monotherapy or in some combinations". ²²					
	^b We are using C02 medications in sensitivity analyses only as many have other indications and they are rarely used as single agents for hypertension.					
	The co-primary outcomes for this analysis are starting a medication treatment for:					
	- hypertension (i.e., supplied with a drug that comes under ATC classes C08, C09A, C09B, C09C, C09D, and C03A); and					
Outcomes	- hypercholesterolemia (i.e., supplied with a drug that comes under ATC class C10)					
Outcomes	Follow-up time will begin six months after randomisation, and end at the earliest of:					
	(i) first supply of an abovementioned medication;					
	(ii) date last known to be alive; or					
	(iii) 5 years and 1 month after randomisation.					
	Specific Hypotheses					
	- The hazard rate of incident hypertension medication* use and the hazard rate of incident lipid-modifying agent use will be different between the vitamin D and placebo groups.					
Hypotheses	- Vitamin D supplementation will interact with age, sex, BMI, and predicted baseline 25(OH)D concentration to alter the incidence of each co-primary outcome.					
	* the classes of medications used to treat hypertension could also be used for a range of other indications. The term 'hypertension medication' is used here and onwards for easier understanding/navigation of readers.					
Data details						
Analysis package	SAS 9.4, STATA version 15 and R version 4.1.1					
Dataset	The SAS dataset used to generate the published results will be stored in					
	$L: Lab_RachelN \ DHealth Data Analysis \ Projects \ Hypertension \ Data$					
	R:\Lab_RachelN\DHealthDataAnalysis\Projects\Hypertension\Data					
Participants	To be eligible for either analysis, a participant must have consented to PBS linkage and have date last known to be alive >6 months from randomisation. People supplied with a hypertension medication within 6 months of randomisation (prevalent user) will					

	be excluded from the analysis of hypertension. Similarly, those supplied with a lipid- modifying agent within 6 months of randomisation (prevalent user) will be excluded from the analysis of hypercholesterolemia.
Codebook	L:\Lab_RachelN\DHealthDataAnalysis\Projects\Hypertension\Codebook
Exposure variable(s)	Randomisation group
	Adjustment variables:
	 Age at randomisation: 60-64; 65-69; 70-74; 75+
	• Sex: F; M
	 State of residence at randomisation: NSW; QLD; SA; TAS; VIC; WA
	Variables considered to be potential effect modifiers:
	 Sex (men, women)
Covariates	 Age at randomisation (<70 years, ≥ 70 years)
	• BMI at randomisation (<25, 25 to <30, \geq 30 kg/m ²)
	• Predicted baseline 25(OH)D concentration ($<50, \ge 50 \text{ nmol/L}$)
	 Prevalent use of lipid-modifying agents (no, yes)¹
	 Prevalent use of hypertension medication (no, yes)²
	¹ For analyses of incident hypertension only
	² For analyses of incident hypercholesterolaemia only
	Missing outcome data
Handling	We will assume there is no missing outcome data since we will exclude participants who did not consent to PBS linkage.
missing data	Missing covariate data
	Participants with missing BMI data (<0.5%) will be excluded from analyses stratified by BMI.
	Analysts will be blinded to study group allocation during initial analysis. Code will be written and tested using a dataset in which the randomisation allocation and the participants' identification code have been removed.
Maintaining blinding	Development and testing of code will include producing all results, including tables and figures, as they will appear in the manuscript. Once all the investigators have approved the analysis plan, the analyst will be given 'unblinded' data for the completion of all pre-specified analyses.
	Any analyses that we perform that are not pre-specified will be declared as exploratory.
Proposed seque	nce of Statistical Analysis
- F '1	The code used to generate the results will be stored in
File management	$L: Lab_RachelN \ DHealth Data Analysis \ Projects \ Hypertension \ Code$
	$R: Lab_RachelN \ DHealth Data \ Analysis \ Projects \ Hypertension \ Code$
Analysis	- Flow of the participants included in the analyses of the co-primary outcomes will be presented using a CONSORT flow diagram (Figure 1).

Distributions of baseline characteristics will be compared between participants included and excluded from the analytic datasets. We will report p-values from chi-squared tests (Table S2).

- We will present the baseline characteristics of the participants included in the analyses according to randomisation group (**Table 1**). Since 49% and 43% of D-Health participants are excluded from the analyses of hypertension and hypercholesterolaemia, respectively, we will use chi-squared tests to assess whether characteristics vary between the randomisation groups.

Associations with risk factors

- We will present descriptive statistics for hypertension medication and lipidmodifying agent use within subgroups of selected baseline characteristics. The associations between potential risk factors ascertained at baseline and outcome variables [(i) incident hypertension medication use; (ii) incident lipid-modifying agent use] will be estimated using flexible parametric survival models (FPSMs). All estimates will be adjusted for randomisation group, age and sex (**Table S3**). We will assume proportional hazards for all covariates included in the models.

Effect of supplementation on use of hypertension medication

- We will use Aalen-Johansen methods to plot the cause-specific cumulative probability of hypertension medication use for each randomisation group, treating death without prior hypertension medication use as a competing risk (**Figure 2A**).
- For our analysis of the effect of vitamin D supplementation on incidence of hypertension medication use, we will fit two FPSMs.^{23,24} Both models will include randomisation group and the randomisation stratification variables of age, sex, and state of residence at baseline. We will model the baseline log cumulative hazard function using a restricted cubic spline with two internal knots (placed at the 33rd and 67th percentiles of the uncensored log survival times).
 - a. To estimate an overall hazard ratio (HR), we will use an FPSM that assumes proportional hazards (Model 1). The overall HR and 95% CI will be embedded in **Figure 2A** and reported in **Table S4**.
 - b. To allow the HR to vary with time, we will use a second FPSM (Model 2) that includes an interaction between randomisation group and time since the start of follow-up (fitted as a restricted cubic spline with one internal knot placed at the median of uncensored log survival times). Using Model 2, we will report the HR (95% CI) at 2 and 4 years since the start of follow-up (Table S4) and plot the estimated HR (95% CI) as a function of time since randomisation (Figure S1A). We will also report the p-value from a likelihood ratio test (embedded in Figure S1A) comparing Models 1 and 2 (i.e. testing the effect of including the interaction between time and randomisation group).
- We will estimate the difference in cause-specific standardized cumulative incidence, treating death without prior medication treatment of hypertension as a competing risk (Figure S1B), reporting values at 2 and 4 years of follow up (Table S4). For this analysis, we will use estimates from FPSMs and the user-written *standsurv* command in Stata with the competing risks models option. The baseline log cumulative hazard function and the interaction between randomisation group and time will be modelled as described above. All FPSMs will include

	randomisation group, and the randomisation stratification variables of age, sex, and state of residence at baseline.								
	Effect of supplementation on use of lipid-modifying agents								
	- We will follow the same analytic approach as for use of hypertension medication. The cause-specific cumulative probability of use of lipid-modifying agents for each randomisation group will be presented as Figure 2B .								
	- Results from FPSM models that include an interaction between randomisation group and time since start of follow-up will be presented in Figure S2A and Figure S2B.								
	- The estimated HR (95% CI) and difference in cause-specific standardised cumulative incidence (95% CI) at 2 and 4 years of follow-up will be presented in Table S4.								
	Subgroup analyses								
	For each outcome, we will use FPSMs to examine whether the effect of supplementation is modified by the following baseline characteristics:								
	• Age (< 70 years, \geq 70 years);								
	• Sex (men, women);								
	• BMI (<25, 25 to <30, \geq 30 kg/m ²);								
	 ○ Predicted deseasonalised 25(OH)D concentration (< 50 nmol/L, ≥ 50 nmol/L); 								
	 Prevalent use of lipid-modifying agents (no, yes) (analysis of incident hypertension only); and 								
	• Prevalent use of hypertension medication (no, yes) (analysis of incident hypercholesterolaemia only).								
	The baseline hazard will be modelled as described previously. The FPSM will include randomisation group, age, sex, and state of residence at baseline, the baseline characteristic of interest, and an interaction between the baseline characteristic and randomisation group. We will assume proportional hazards for all covariates. We will use a likelihood ratio test to compare models with and without the interaction term. Results will be presented as forest plots (Figure 3 and Figure 4).								
	Sensitivity analysis that accounts for all possible classes of hypertension medication								
	- We will repeat the main analyses of incident hypertension medication use considering all possible classes of hypertension medication including C02, C03, C07, C08, and C09 (vs C08, C09A, C09B, C09C, C09D, and C03A in the main analysis). We will reproduce figure 2A to form Figure S3 .								
Significance level	We will use a significance level of 0.05. We will not adjust for multiple testing. ^{25,26}								
Planned main tables (Appendix A)	Table 1. Baseline characteristics of the participants included in analyses according to randomisation group								

	Figure 1. Flow of the participants included in the analyses of incident hypertension medication use and incident lipid-modifying agent use (CONSORT flow diagram)					
Planned main	Figure 2. Cause-specific probability of (A) hypertension medication; and (B) lipid- modifying agent use according to follow-up time and randomisation group					
(Appendix B)	Figure 3. Effect of vitamin D supplementation on incident hypertension medication use overall and within participant subgroups					
	Figure 4. Effect of vitamin D supplementation on incident lipid-modifying agent use overall and within participant subgroups					
	Table S1. Anatomical Therapeutic Chemical code for hypertension medication and lipid-modifying agents					
Planned	Table S2. Baseline characteristics of participants included versus excluded from the final analyses					
supplementary tables (Appendix C)	Table S3. Associations between selected baseline characteristics and incidence of hypertension and hypercholesterolemia medication					
	Table S4. Effect of vitamin D supplementation on incident hypertension medication and lipid-modifying agent use. Predicted difference in cause-specific standardised cumulative incidence and time-varying hazard ratio at 2 and 4 years of follow-up, and predicted overall hazard ratio					
	Figure S1. Effect of vitamin D supplementation on incident use of hypertension medication. Panel A shows the time-varying hazard ratio and panel B shows the difference in the cause-specific standardised cumulative incidence functions					
Planned supplementary figures (Appendix D)	Figure S2. Effect of vitamin D supplementation on incident use of lipid-modifying agents. Panel A shows the time-varying hazard ratio and panel B shows the difference in the cause-specific standardised cumulative incidence functions					
	Figure S3. Cause-specific cumulative probability of hypertension medication use according to follow-up time in the vitamin D and placebo groups, a sensitivity analysis accounting for all possible hypertension medications (including ATC classes C02, C03, C07, C08, C09)					

References

- Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. *Lancet*. 2012;380(9859):2224-2260.
- 2. WHO. Cardiovascular diseases. World Health Organization. <u>https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1</u>. Published 2022. Accessed 8/18/2022, 2022.
- 3. ABS. Hypertension and measured high blood pressure. Australian Bureau of Statistics. <u>https://www.abs.gov.au/statistics/health/health-conditions-and-risks/hypertension-and-measured-high-blood-pressure/latest-release</u>. Published 2018. Accessed 8/18/2022, 2022.
- 4. ABS. High cholesterol. Australian Bureau of Statistics. <u>https://www.abs.gov.au/statistics/health/health-conditions-and-risks/high-cholesterol/latest-release</u>. Published 2018. Accessed 8/19/2022, 2022.
- 5. Nicoll R, Henein MY. Hypertension and lifestyle modification: how useful are the guidelines? *Br J Gen Pract.* 2010;60(581):879-880.
- 6. Mannu GS, Zaman MJ, Gupta A, Rehman HU, Myint PK. Evidence of lifestyle modification in the management of hypercholesterolemia. *Curr Cardiol Rev.* 2013;9(1):2-14.
- Bai G, Zhang J, Zhao C, Wang Y, Qi Y, Zhang B. Adherence to a healthy lifestyle and a DASH-style diet and risk of hypertension in Chinese individuals. *Hypertens Res.* 2017;40(2):196-202.
- 8. Egan BM, Li J, Qanungo S, Wolfman TE. Blood pressure and cholesterol control in hypertensive hypercholesterolemic patients. *Circulation*. 2013;128(1):29-41.
- 9. Fahed AC, Wang M, Patel AP, et al. Association of the interaction between familial hypercholesterolemia variants and adherence to a healthy lifestyle with risk of coronary artery disease. *JAMA Netw Open.* 2022;5(3):e222687.
- Khalil H, Zeltser R. Antihypertensive Medications. Treasure Island (FL): StatPearls Publishing. StatPearls [Internet] Web site. <u>https://www.ncbi.nlm.nih.gov/books/NBK554579/</u>. Published 2022. Accessed 8/22/2022, 2022.
- 11. Reyes-García A, López-Olmedo N, Basto-Abreu A, Shamah-Levy T, Barrientos-Gutierrez T. Adherence to the DASH diet by hypertension status in Mexican men and women: a cross-sectional study. *Prev Med Rep.* 2022;27(Jun 2022).
- 12. Pilz S, Gaksch M, Kienreich K, et al. Effects of vitamin D on blood pressure and cardiovascular risk factors. *Hypertension*. 2015;65(6):1195-1201.
- Asano L, Watanabe M, Ryoden Y, et al. Vitamin D Metabolite, 25-Hydroxyvitamin D, Regulates Lipid Metabolism by Inducing Degradation of SREBP/SCAP. *Cell Chem Biol*. 2017;24(2):207-217.
- 14. Zhang D, Cheng C, Wang Y, et al. Effect of vitamin D on blood pressure and hypertension in the general population: an update meta-analysis of cohort studies and randomized controlled trials. *Prev Chronic Dis.* 2020;17(E03):1-13.
- 15. Vimaleswaran KS, Cavadino A, Berry DJ, et al. Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study. *Lancet Diabetes Endocrinol.* 2014;2(9):719-729.

- 16. Scragg R, Stewart AW, Waayer D, et al. Effect of Monthly High-Dose Vitamin D Supplementation on Cardiovascular Disease in the Vitamin D Assessment Study : A Randomized Clinical Trial. *JAMA Cardiol.* 2017;2(6):608-616.
- Margolis KL, Ray RM, Van Horn L, et al. Effect of calcium and vitamin D supplementation on blood pressure: the Women's Health Initiative Randomized Trial. *Hypertension*. 2008;52(5):847-855.
- 18. Wang Y, Si S, Liu J, et al. The associations of serum lipids with vitamin D status. *PLoS One*. 2016;11(10):e0165157.
- 19. Li Y, Tong CH, Rowland CM, et al. Association of changes in lipid levels with changes in vitamin D levels in a real-world setting. *Sci Rep.* 2021;11(1).
- 20. Mai XM, Videm V, Sheehan NA, Chen Y, Langhammer A, Sun YQ. Potential causal associations of serum 25-hydroxyvitamin D with lipids: a Mendelian randomization approach of the HUNT study. *Eur J Epidemiol.* 2019;34(1):57-66.
- 21. Dibaba DT. Effect of vitamin D supplementation on serum lipid profiles: a systematic review and meta-analysis. *Nutr Rev.* 2019;77(12):890-902.
- 22. National Heart Foundation of Australia. *Guideline for the diagnosis and management of hypertension in adults 2016*. Melbourne: National Heart Foundation of Australia;2016.
- 23. Royston P, Parmar MK. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. *Statistics in medicine*. 2002;21(15):2175-2197.
- 24. Lambert PC, Royston P. Further development of flexible parametric models for survival analysis. *Stata J.* 2009;9(2):265-290.
- 25. Li G, Taljaard M, Van den Heuvel ER, et al. An introduction to multiplicity issues in clinical trials: the what, why, when and how. *Int J Epidemiol*. 2017;46(2):746-755.
- 26. Rothman KJ. No adjustments are needed for multiple comparisons. *Epidemiology*. 1990;1(1):43-46.

THE FOLLOWING APPENDICES CONTAIN SAMPLE TABLES AND FIGURES BASED ON "FAKE" DATA

To generate the "fake" data, we removed the true randomisation and participant identification codes from the original dataset, and then randomly assigned participants to two groups of equal size. There is no relationship between the new groups and the true treatment allocation.

Appendix A. Main Tables

 Table 1. Baseline characteristics of the participants included in the analyses according to randomisation group [Note: based on dummy data]

	Outcome: Hy	pertension medic	ation use ¹	Outcome: Lipid-modifying agent use ²				
	Ν	(%)		Ν	(%)			
	Vitamin D	Placebo		Vitamin D	Placebo			
Characteristic	(N = 5520)	(N = 5442)	P-value ³	(N = 6101)	(N = 6025)	P-value ³		
Age (years)								
60-64	1654 (30.0)	1605 (29.5)	0.24	1809 (29.7)	1759 (29.2)	0.12		
65-69	1560 (28.3)	1634 (30.0)		1693 (27.7)	1764 (29.3)			
70-74	1389 (25.2)	1326 (24.4)		1500 (24.6)	1497 (24.8)			
≥ 75	917 (16.6)	877 (16.1)		1099 (18.0)	1005 (16.7)			
Sex								
Men	2867 (51.9)	2800 (51.5)	0.61	3109 (51.0)	3081 (51.1)	0.84		
Women	2653 (48.1)	2642 (48.5)		2992 (49.0)	2944 (48.9)			
Body mass index (kg/m²)								
< 25	2047 (37.3)	2000 (36.9)	0.78	2116 (34.8)	2053 (34.2)	0.46		
25 to < 30	2327 (42.3)	2329 (43.0)		2533 (41.7)	2569 (42.8)			
≥ 30	1121 (20.4)	1087 (20.1)		1425 (23.5)	1377 (23.0)			
Missing	25	26		27	26			
Predicted 25(OH)D concentration (nmol/L)								
< 50	1280 (23.2)	1227 (22.5)	0.42	1453 (23.8)	1387 (23.0)	0.30		
≥ 50	4240 (76.8)	4215 (77.5)		4648 (76.2)	4638 (77.0)			
State of residence								
Queensland	1135 (20.6)	1101 (20.2)	0.70	1210 (19.8)	1159 (19.2)	0.27		
New South Wales	1120 (20.3)	1079 (19.8)		1202 (19.7)	1212 (20.1)			
Victoria	931 (16.9)	894 (16.4)		1091 (17.9)	1004 (16.7)			
Tasmania	650 (11.8)	642 (11.8)		748 (12.3)	748 (12.4)			
South Australia	784 (14.2)	832 (15.3)		872 (14.3)	933 (15.5)			
Western Australia	900 (16.3)	894 (16.4)		978 (16.0)	969 (16.1)			

	Outcome: Hy	pertension medic	ation use ¹	Outcome: Lipid-modifying agent use ²			
Characteristic	N (Vitamin D (N = 5520)	(%) Placebo (N = 5442)	P_value ³	N Vitamin D (N = 6101)	(%) Placebo (N = 6025)	P.valuo ³	
Highest qualification obtained	(14 - 5520)	(14 - 3442)	r-value	(14 - 0101)	(14 - 0023)	r-value	
None	<i>AA</i> 3 (8 1)	473 (8 8)	0.81	490 (8 1)	536 (9.0)	0.27	
School or intermediate certificate	870 (15 9)	856 (15 9)	0.01	962 (15 9)	996 (16 7)	0.27	
Higher school or leaving certificate	768 (14 1)	750 (13.9)		848 (14 0)	818 (13 7)		
Apprenticeship or certificate	1814 (33.2)	1767 (32.8)		2009 (33.2)	1954 (32.8)		
University degree or higher	1566 (28.7)	1547 (28.7)		1739 (28.8)	1660 (27.8)		
Missing	59	49		53	61		
Smoking history	33	15		33	01		
Never	3123 (57.0)	3073 (56.9)	0.63	3447 (56.9)	3417 (57.2)	0.82	
Ex-smoker	2123 (38.7)	2078 (38.5)	0.00	2349 (38.8)	2312 (38.7)	0.02	
Current	233 (4.3)	250 (4.6)		264 (4.4)	247 (4.1)		
Missina	41	41		41	49		
Alcohol consumption (drinks/week)							
<1	1243 (23.3)	1233 (23.5)	0.82	1364 (23.2)	1406 (24.2)	0.24	
1 to 7	2496 (46.9)	2441 (46.6)		2751 (46.8)	2626 (45.3)		
> 7 to 14	976 (18.3)	990 (18.9)		1102 (18.7)	1073 (18.5)		
> 14	610 (11.5)	579 (11.0)		664 (11.3)	697 (12.0)		
Missing	195	199		220	223		
Living alone							
No	4422 (80.5)	4369 (80.7)	0.87	4870 (80.2)	4804 (80.2)	0.99	
Yes	1068 (19.5)	1047 (19.3)		1202 (19.8)	1185 (19.8)		
Missing	30	26		29	36		

	Outcome: Lipid-modifying agent use ²					
	N	(%)	N (%)			
	Vitamin D	Placebo		Vitamin D	Placebo	
Characteristic	(N = 5520)	(N = 5442)	P-value ³	(N = 6101)	(N = 6025)	P-value ³
Self-rated overall health						
Excellent or very good	3456 (63.6)	3404 (63.6)	0.99	3709 (61.8)	3652 (61.5)	0.62
Good	1653 (30.4)	1634 (30.5)		1892 (31.5)	1909 (32.1)	
Fair or poor	325 (6.0)	318 (5.9)		404 (6.7)	379 (6.4)	
Missing	86	86		96	85	
Self-rated quality of life						
Excellent or very good	3898 (72.3)	3829 (71.7)	0.37	4227 (70.8)	4144 (70.1)	0.62
Good	1258 (23.3)	1249 (23.4)		1454 (24.4)	1486 (25.1)	
Fair or poor	237 (4.4)	265 (5.0)		286 (4.8)	284 (4.8)	
Missing	127	99		134	111	
Prevalent hypertension medication user ⁴						
No	5520 (100.0)	5442 (100.0)		4260 (69.8)	4160 (69.0)	0.35
Yes				1841 (30.2)	1865 (31.0)	
Prevalent lipid-modifying agent user⁵						
No	4260 (77.2)	4160 (76.4)	0.36	6101 (100.0)	6025 (100.0)	
Yes	1260 (22.8)	1282 (23.6)				

¹Participants who had given consent for PBS linkage, were known to be alive 6 months after randomisation, and who had not had any hypertension medication prescribed within 6 months of being randomised are included in the final analysis

² Participants who had given consent for PBS linkage, were known to be alive 6 months after randomisation, and who had not had any lipid-modifying agents prescribed within 6 months of being randomised are included in the final analysis

³ P-value from chi-squared test

⁴ Defined as supplied hypertension medication within 6 months after being randomised

⁵ Defined as supplied lipid-modifying agent within 6 months after being randomised

Abbreviation: PBS – Pharmaceutical Benefits Scheme

Appendix B. Main Figures

Figure 1. Flow of the participants included in the analyses of incident hypertension medication use and incident lipid-modifying agent use (CONSORT flow diagram)

⁺ Those who self-reported a previous or current diagnosis of hypercalcemia, hyperparathyroidism, kidney stones, osteomalacia or sarcoidosis, or who were taking >500 international units supplemental vitamin D per day were ineligible for randomisation

^{*} Defined as supplied any hypertension medication within 6 months after being randomised

[§] Defined as supplied any lipid-modifying agent within 6 months after being randomised

Abbreviations: EOI - Expression of interest; PBS - Pharmaceutical Benefits Scheme

Figure 2. Cause-specific cumulative probability of: (A) hypertension medication; and (B) lipid-modifying agent use according to follow-up time and randomisation group. [*Note:* based on dummy data]

Curves estimated using Aalen-Johansen methods, treating death without prior medication use event as a competing risk. The hazard ratio (vitamin D versus placebo) was estimated using a flexible parametric survival model that included randomisation group, age, sex, and state of residence at baseline. Time 0 is at 6 months after randomisation, when follow-up began. People supplied with the medications within 6 months of randomisation were excluded, as were participants whose last known date alive was within 6 months of randomisation.

Abbreviation: CI – confidence interval

	Vitamin D	Placebo			I	Hazaı (95	d Ratio % CI)		P Value fo
	Incidence rate per 1	000 person-years				(00	,		moruou
All participants	62.1	62.4				———————————————————————————————————————		1.00 (0.92 to 1.07)	
Age									0.71
< 70 years	53.0	54.2				———————————————————————————————————————		0.98 (0.88 to 1.09)	
≥ 70 years	75.7	75.1				I		1.01 (0.90 to 1.12)	
Sex									0.0068
Men	69.3	63.2			H		I	1.10 (0.99 to 1.21)	
Women	54.7	61.5						0.89 (0.79 to 0.99)	
Body mass index									0.92
< 25 kg/m²	49.0	48.1					—	1.02 (0.88 to 1.17)	
25 to < 30 kg/m ²	65.3	65.7		F				1.00 (0.89 to 1.12)	
≥ 30 kg/m²	81.1	82.8	F					0.97 (0.84 to 1.13)	
Predicted 25(OH)D concentra	ation								0.66
< 50 nmol/L	65.4	63.6		l				1.03 (0.88 to 1.20)	
≥ 50 nmol/L	61.2	62.0						0.99 (0.90 to 1.07)	
Prevalent lipid-modifying age	ent user								0.80
No	58.4	58.9		 		———————————————————————————————————————		0.99 (0.91 to 1.08)	
Yes	75.2	73.8						1.01 (0.87 to 1.17)	
			0.8	0.9	1.0	1.1	1.2		
			•	•			•		
			Vitamin I	D Better		Placeb	o Better		

Figure 3: Effect of vitamin D supplementation on incident hypertension medication use overall and within participant subgroups [Note: based on dummy data]

Hazard ratios were calculated using flexible parametric survival models. All models included randomisation group, age, sex, and state of residence at baseline. Models producing estimates by levels of age, sex, BMI, and predicted 25(OH)D concentration included the characteristic of interest and an interaction between randomisation group and the characteristic of interest. Proportional hazards was assumed for all covariates. P value for interaction is from a likelihood ratio test comparing models with and without the interaction term. Abbreviation: CI – confidence interval

	Vitamin D Incidence Rate per 1	Placebo 1000 person-years			I	Hazard (95%	Ratio CI)				P Value fo
All participants	54.4	51.2								1.06 (0.98 to 1.15)	
Age											0.54
< 70 years	51.5	49.8		ŀ						1.04 (0.94 to 1.15)	
≥ 70 years	58.5	53.3				-				1.09 (0.97 to 1.23)	
Sex											0.0084
Men	64.1	55.0				⊢ −−−∎				1.16 (1.05 to 1.29)	
Women	44.9	47.4	I		-					0.94 (0.84 to 1.06)	
Body mass index											0.51
< 25 kg/m²	42.9	43.3		 						0.99 (0.86 to 1.15)	
25 to < 30 kg/m ²	57.8	52.3								1.11 (0.98 to 1.24)	
≥ 30 kg/m²	65.4	62.2								1.04 (0.90 to 1.21)	
Predicted 25(OH)D concentr	ation										0.25
< 50 nmol/L	61.4	53.1								1.15 (0.98 to 1.34)	
≥ 50 nmol/L	52.3	50.7								1.03 (0.95 to 1.13)	
Prevalent hypertension med	lication user										0.13
No	49.7	44.6			 		I			1.11 (1.01 to 1.23)	
Yes	65.9	67.1			-					0.99 (0.87 to 1.12)	
			0.8	0.9	1.0	1.1	1.2	1.3	1.4		
			Vitamir	■ D Better		Placebo	Better				

Figure 4: Effect of vitamin D supplementation on incident lipid-modifying agent use overall and within participant subgroups [*Note:* based on dummy data]

Hazard ratios were calculated using flexible parametric survival models. All models included randomisation group, age, sex, and state of residence at baseline. Models producing estimates by levels of age, sex, BMI, and predicted 25(OH)D concentration included the characteristic of interest and an interaction between randomisation group and the characteristic of interest. Proportional hazards was assumed for all covariates. P value for interaction is from a likelihood ratio test comparing models with and without the interaction term. Abbreviation: CI – confidence interval

Appendix C. Supplementary Tables

Table S1. Anatomical Therapeutic Chemical codes for hypertension medication and lipid-modifying agents

Anatomical Therapeutic Chemical	
CO2 ANTIHYPERTENSIVES ²	CO2A ANTIADRENERGIC AGENTS, CENTRALLY ACTING
	C02B ANTIADRENERGIC AGENTS, GANGLION-BLOCKING
	C02C ANTIADRENERGIC AGENTS, PERIPHERALLY ACTING
	C02D ARTERIOLAR SMOOTH MUSCLE, AGENTS ACTING ON
	C02K OTHER ANTIHYPERTENSIVES
	C02L ANTIHYPERTENSIVES AND DIURETICS IN COMBINATION
	C02N COMBINATIONS OF ANTIHYPERTENSIVES IN ATC-GR. C02
CO3 DIURETICS	C03A LOW-CEILING DIURETICS, THIAZIDES
	C03B LOW-CEILING DIURETICS, EXCL. THIAZIDES ²
	C03C HIGH-CEILING DIURETICS ²
	C03D ALDOSTERONE ANTAGONISTS AND OTHER POTASSIUM-SPARING
	AGENTS ²
	C03E DIURETICS AND POTASSIUM-SPARING AGENTS IN COMBINATION ²
	C03X OTHER DIURETICS ²
C07 BETA BLOCKING AGENTS ²	C07A BETA BLOCKING AGENTS
	C07B BETA BLOCKING AGENTS AND THIAZIDES
	C07C BETA BLOCKING AGENTS AND OTHER DIURETICS
	C07D BETA BLOCKING AGENTS. THIAZIDES AND OTHER DIURETICS
	C07E BETA BLOCKING AGENTS AND VASODILATORS
	C07F BETA BLOCKING AGENTS, OTHER COMBINATIONS
C08 CALCIUM CHANNEL BLOCKERS	C08C SELECTIVE CALCIUM CHANNEL BLOCKERS WITH MAINLY VASCULAR
	EFFECTS
	C08D SELECTIVE CALCIUM CHANNEL BLOCKERS WITH DIRECT CARDIAC
	EFFECTS
	C08E NON-SELECTIVE CALCIUM CHANNEL BLOCKERS
	C08G CALCIUM CHANNEL BLOCKERS AND DIURETICS
CO9 AGENTS ACTING ON THE RENIN-	C09A ACE INHIBITORS, PLAIN
ANGIOTENSIN SYSTEM	C09B ACE INHIBITORS, COMBINATIONS
	C09C ANGIOTENSIN II RECEPTOR BLOCKERS (ARBs), PLAIN
	C09D ANGIOTENSIN II RECEPTOR BLOCKERS (ARBs), COMBINATIONS
	C09X OTHER AGENTS ACTING ON THE RENIN-ANGIOTENSIN SYSTEM ²
C10 LIPID-MODIFYING AGENTS	C10A LIPID-MODIFYING AGENTS, PLAIN
	C10B LIPID-MODIFYING AGENTS, COMBINATIONS

¹ Source: <u>https://www.whocc.no/atc_ddd_index/?code=C02&showdescription=no;</u>² used in the sensitivity analyses only

Consent to PBS linkage			age	Incident hypertension medication use ¹			Incident lipid-modifying agent use ²		
	Yes	No		Included	Excluded		Included	Excluded	
Characteristic	N (%)	N (%)	P-value ³	N (%)	N (%)	P-value ³	N (%)	N (%)	P-value ³
Randomisation Group									
Placebo	9803 (50.3)	852 (47.0)	0.01	5442 (49.6)	4361 (51.1)	0.04	6025 (49.7)	3778 (51.3)	0.03
Vitamin D	9694 (49.7)	961 (53.0)		5520 (50.4)	4174 (48.9)		6101 (50.3)	3593 (48.7)	
Age (years)									
60-64	4786 (24.5)	466 (25.7)	0.22	3259 (29.7)	1527 (17.9)	<0.01	3568 (29.4)	1218 (16.5)	<0.01
65-69	5367 (27.5)	467 (25.8)		3194 (29.1)	2173 (25.5)		3457 (28.5)	1910 (25.9)	
70-74	5314 (27.3)	482 (26.6)		2715 (24.8)	2599 (30.5)		2997 (24.7)	2317 (31.4)	
≥ 75	4030 (20.7)	398 (22.0)		1794 (16.4)	2236 (26.2)		2104 (17.4)	1926 (26.1)	
Sex									
Men	10663 (54.7)	867 (47.8)	<0.01	5667 (51.7)	4996 (58.5)	< 0.01	6190 (51.0)	4473 (60.7)	<0.01
Women	8834 (45.3)	946 (52.2)		5295 (48.3)	3539 (41.5)		5936 (49.0)	2898 (39.3)	
Body mass index (kg/m²)									
< 25	5854 (30.2)	563 (31.6)	0.34	4047 (37.1)	1807 (21.3)	<0.01	4169 (34.5)	1685 (23.0)	< 0.01
25 to < 30	8297 (42.7)	732 (41.1)		4656 (42.7)	3641 (42.8)		5102 (42.3)	3195 (43.5)	
≥ 30	5261 (27.1)	484 (27.2)		2208 (20.2)	3053 (35.9)		2802 (23.2)	2459 (33.5)	
Missing	85	34		51	34		53	32	
Predicted 25(OH)D concentration	n (nmol/L)								
< 50	4718 (24.2)	482 (26.6)	0.02	2507 (22.9)	2211 (25.9)	< 0.01	2840 (23.4)	1878 (25.5)	<0.01
≥ 50	14779 (75.8)	1331 (73.4)		8455 (77.1)	6324 (74.1)		9286 (76.6)	5493 (74.5)	
State of residence									
Queensland	3893 (20.0)	313 (17.3)	0.03	2236 (20.4)	1657 (19.4)	0.02	2369 (19.5)	1524 (20.7)	<0.01
New South Wales	3989 (20.5)	353 (19.5)		2199 (20.1)	1790 (21.0)		2414 (19.9)	1575 (21.4)	
Victoria	3370 (17.3)	332 (18.3)		1825 (16.6)	1545 (18.1)		2095 (17.3)	1275 (17.3)	
Tasmania	2282 (11.7)	230 (12.7)		1292 (11.8)	990 (11.6)		1496 (12.3)	786 (10.7)	
South Australia	2855 (14.6)	266 (14.7)		1616 (14.7)	1239 (14.5)		1805 (14.9)	1050 (14.2)	
Western Australia	3108 (15.9)	319 (17.6)		1794 (16.4)	1314 (15.4)		1947 (16.1)	1161 (15.8)	

 Table S2. Baseline characteristics of participants included versus excluded from the final analyses [Note: based on dummy data]

	Consent to PBS linkage			Incident hypertension medication use ¹			Incident lipid-modifying agent use ²		
	Yes	No		Included	Excluded		Included	Excluded	
Characteristic	N (%)	N (%)	P-value ³	N (%)	N (%)	P-value ³	N (%)	N (%)	P-value ³
Highest qualification obtained									
None	1907 (9.9)	237 (13.4)	<0.01	916 (8.4)	991 (11.8)	<0.01	1026 (8.5)	881 (12.1)	< 0.01
School or intermediate cert.	3230 (16.7)	325 (18.4)		1726 (15.9)	1504 (17.8)		1958 (16.3)	1272 (17.5)	
Higher school or leaving cert.	2700 (14.0)	265 (15.0)		1518 (14.0)	1182 (14.0)		1666 (13.9)	1034 (14.2)	
Apprenticeship or cert.	6437 (33.4)	595 (33.7)		3581 (33.0)	2856 (33.9)		3963 (33.0)	2474 (34.0)	
University degree or higher	5010 (26.0)	341 (19.3)		3113 (28.7)	1897 (22.5)		3399 (28.3)	1611 (22.2)	
Missing	213	50		108	105		114	99	
Smoking history									
Never	10568 (54.6)	1024 (57.4)	0.04	6196 (56.9)	4372 (51.7)	<0.01	6864 (57.0)	3704 (50.7)	<0.01
Ex-smoker	7957 (41.1)	680 (38.1)		4201 (38.6)	3756 (44.4)		4661 (38.7)	3296 (45.1)	
Current	815 (4.2)	81 (4.5)		483 (4.4)	332 (3.9)		511 (4.2)	304 (4.2)	
Missing	157	28		82	75		90	67	
Alcohol consumption (drinks/wee	ek)								
< 1	4606 (24.5)	441 (25.7)	0.03	2476 (23.4)	2130 (26.0)	<0.01	2770 (23.7)	1836 (25.9)	<0.01
1 to 7	8310 (44.3)	794 (46.3)		4937 (46.7)	3373 (41.1)		5377 (46.0)	2933 (41.4)	
> 7 to 14	3457 (18.4)	297 (17.3)		1966 (18.6)	1491 (18.2)		2175 (18.6)	1282 (18.1)	
> 14	2398 (12.8)	182 (10.6)		1189 (11.3)	1209 (14.7)		1361 (11.6)	1037 (14.6)	
Missing	726	99		394	332		443	283	
Living alone									
No	15563 (80.2)	1397 (77.8)	0.01	8791 (80.6)	6772 (79.8)	0.14	9674 (80.2)	5889 (80.3)	0.91
Yes	3834 (19.8)	399 (22.2)		2115 (19.4)	1719 (20.2)		2387 (19.8)	1447 (19.7)	
Missing	100	17		56	44		65	35	
Self-rated overall health									
Excellent or very good	10719 (55.8)	928 (52.4)	0.02	6860 (63.6)	3859 (45.9)	<0.01	7361 (61.6)	3358 (46.3)	< 0.01
Good	6838 (35.6)	680 (38.4)		3287 (30.5)	3551 (42.2)		3801 (31.8)	3037 (41.9)	
Fair or poor	1638 (8.5)	162 (9.2)		643 (6.0)	995 (11.8)		783 (6.6)	855 (11.8)	
Missing	302	43		172	130		181	121	

	Conse	Consent to PBS linkage			cident hypertension medication use ¹			Incident lipid-modifying agent use ²		
Characteristic	Yes N (%)	No N (%)	P-value ³	Included N (%)	Excluded N (%)	P-value ³	Included N (%)	Excluded N (%)	P-value ³	
Self-rated quality of life										
Excellent or very good	12903 (67.7)	1057 (60.7)	<0.01	7727 (72.0)	5176 (62.1)	< 0.01	8371 (70.5)	4532 (63.0)	<0.01	
Good	5075 (26.6)	556 (31.9)		2507 (23.4)	2568 (30.8)		2940 (24.7)	2135 (29.7)		
Fair or poor	1095 (5.7)	129 (7.4)		502 (4.7)	593 (7.1)		570 (4.8)	525 (7.3)		
Missing	424	71		226	198		245	179		
Prevalent hypertension medica	ation user ⁴									
No				10962 (100.0)	18 (0.2)	<0.01	8420 (69.4)	2560 (34.7)	<0.01	
Yes				0 (0.0)	8517 (99.8)		3706 (30.6)	4811 (65.3)		
Prevalent lipid-modifying agen	t user⁵									
No				8420 (76.8)	3726 (43.7)	<0.01	12126 (100.0)	20 (0.3)	<0.01	
Yes				2542 (23.2)	4809 (56.3)		0 (0.0)	7351 (99.7)		

¹Among participants with PBS linkage, those who were supplied hypertension medication within 6 months of being randomised, or whose last known date alive was within 6 months of randomisation are excluded from the final analysis

² Among participants with PBS linkage, those who were supplied lipid-modifying agents within 6 months of being randomised, or whose last known date alive was within 6 months of randomisation are excluded from the final analysis

³ p-value from chi-squared test

⁴Defined as supplied any hypertension medication within 6 months after being randomised

⁵ Defined as supplied any lipid-modifying agent within 6 months after being randomised

Abbreviation: cert., certificate; PBS, Pharmaceutical Benefits Scheme

	Incident u	use of hypertension	medication	Incident use of lipid-modifying agents				
		IR per 1000 person-			IR per 1000 person-			
Characteristic	N/person-years	years	HR (95% CI)	N/person-years	years	HR (95% CI)		
All participants	2671/42913	62.2		2554/48346	52.8			
Age (years)								
60-64	638/13318	47.9	ref.	666/14599	45.6	ref.		
65-69	752/12612	59.6	1.24 (1.12, 1.38)	769/13738	56.0	1.22 (1.10, 1.36)		
70-74	746/10413	71.6	1.48 (1.33, 1.64)	640/11884	53.9	1.15 (1.03, 1.29)		
≥ 75	535/6570	81.4	1.66 (1.48, 1.87)	479/8125	59.0	1.24 (1.10, 1.39)		
Sex								
Men	1451/21911	66.2	ref.	1442/24236	59.5	ref.		
Women	1220/21002	58.1	0.93 (0.86, 1.00)	1112/24110	46.1	0.78 (0.73, 0.85)		
Body mass index (kg/m²)								
< 25	796/16401	48.5	ref.	735/17046	43.1	ref.		
25 to < 30	1187/18131	65.5	1.34 (1.22, 1.46)	1116/20282	55.0	1.24 (1.13, 1.36)		
≥ 30	672/8201	81.9	1.71 (1.54, 1.90)	690/10818	63.8	1.49 (1.34, 1.65)		
Predicted 25(OH)D concentration ((nmol/L)							
< 50	626/9707	64.5	1.07 (0.98, 1.17)	637/11108	57.3	1.14 (1.04, 1.25)		
≥ 50	2045/33207	61.6	ref.	1917/37238	51.5	ref.		
Self-rated overall health								
Excellent or very good	1471/27527	53.4	ref.	1354/30025	45.1	ref.		
Good	931/12455	74.7	1.38 (1.27, 1.50)	925/14790	62.5	1.36 (1.25, 1.48)		
Fair or poor	214/2279	93.9	1.74 (1.50, 2.00)	233/2831	82.3	1.78 (1.55, 2.05)		
Self-rated quality of life								
Excellent or very good	1767/30692	57.6	ref.	1653/33814	48.9	ref.		
Good	686/9556	71.8	1.22 (1.12, 1.34)	691/11492	60.1	1.21 (1.11, 1.33)		
Fair or poor	155/1824	85.0	1.44 (1.22, 1.69)	149/2111	70.6	1.43 (1.21, 1.69)		
Smoking history								
Never	1411/24589	57.4	ref.	1320/27820	47.4	ref.		
Ex-smoker	1128/16136	69.9	1.19 (1.10, 1.29)	1082/18249	59.3	1.21 (1.11, 1.31)		
Current	116/1856	62.5	1.14 (0.94, 1.38)	126/1941	64.9	1.36 (1.13, 1.63)		

Table S3. Associations between selected baseline characteristics and incident hypertension and hypercholesterolemia outcomes

¹ Hazard ratios were estimated using flexible parametric survival models with adjustment for randomisation group, and age and sex at baseline. Proportional hazards assumed for all covariates. Abbreviations: CI – confidence interval; IR, incidence rate

Table S4. Effect of vitamin D supplementation on incident hypertension medication and lipidmodifying agent use. Predicted difference in cause-specific standardised cumulative incidence and time-varying hazard ratio at 2 and 4 years of follow-up, and predicted overall hazard ratio

	% Difference in Cumulative	
Years of follow-up	Incidence (95% CI)	Hazard Ratio (95% CI)
Hypertension medication		
2	0.03 (-1.09 to 1.15)	1.00 (0.92 to 1.09)
4	-0.10 (-1.55 to 1.36)	0.98 (0.88 to 1.10)
Overall Hazard Ratio		1.00 (0.92 to 1.07)
Lipid-modifying agent		
2	1.27 (0.27 to 2.28)	1.07 (0.99 to 1.16)
4	1.18 (-0.14 to 2.50)	0.96 (0.85 to 1.08)
Overall Hazard Ratio		1.06 (0.98 to 1.15)

Estimates (comparing vitamin D to placebo) are from flexible parametric survival models that include randomisation group, age, sex, and state of residence at baseline. Time-varying estimates (i.e., estimates at 2 and 4 year of follow-up) were predicted using a model that also included an interaction between randomisation group and follow-up time, fitted as a restricted cubic spline with one internal knot (placed at the median of uncensored log survival times). Cause-specific standardised cumulative incidence was estimated treating death (without prior use of medication of interest) as a competing risk, and probabilities were standardised to the distribution of age, sex, and state of residence at baseline in the entire cohort. The difference in cumulative incidence is expressed as a percentage.

Abbreviation: CI - confidence interval; CIF, cumulative incidence function

Appendix D. Supplementary Figures

Figure S1. Effect of vitamin D supplementation on incident use of hypertension medication. Panel A shows the time-varying hazard ratio and panel B shows the difference in the cause-specific standardised cumulative incidence functions [*Note: based on dummy data*]

Estimates (vitamin D versus placebo) are from a flexible parametric survival model that included randomisation group, age, sex, and state of residence at baseline. The model included an interaction between randomisation group and follow-up time, fitted as a restricted cubic spline with one internal knot (placed at the median of uncensored log incidence times). The interaction between randomisation group and follow-up time was assessed using a likelihood ratio test that compared models with and without the interaction term. Cause-specific cumulative incidence probabilities were standardised to the distribution of age, sex, and state of residence at baseline in the entire cohort, and death without prior use of hypertension medication was treated as a competing risk.

Abbreviations: CI, confidence interval; CIF, cumulative incidence function

Figure S2. Effect of vitamin D supplementation on incident use of lipid-modifying agents. Panel A shows the time-varying hazard ratio and panel B shows the difference in the cause-specific standardised cumulative incidence functions [*Note:* based on dummy data]

Estimates (vitamin D versus placebo) are from a flexible parametric survival model that included randomisation group, age, sex, and state of residence at baseline. The model included an interaction between randomisation group and follow-up time, fitted as a restricted cubic spline with one internal knot (placed at the median of uncensored log incidence times). The interaction between randomisation group and follow-up time was assessed using a likelihood ratio test that compared models with and without the interaction term. Cause-specific cumulative incidence probabilities were standardised to the distribution of age, sex, and state of residence at baseline in the entire cohort, and death without prior use of lipid-modifying agents was treated as a competing risk.

Abbreviations: CI, confidence interval; CIF, cumulative incidence function

Figure S3. Cause-specific cumulative probability of hypertension medication use according to followup time in the vitamin D and placebo groups, a sensitivity analysis accounting for all possible hypertension medications (including ATC classes C02, C03, C07, C08, C09) [*Note:* based on dummy data]

Curves estimated using Aalen-Johansen methods, treating death without prior medication use event as a competing risk. The hazard ratio (vitamin D versus placebo) was estimated using a flexible parametric survival model that included randomisation group, age, sex, and state of residence at baseline. Time 0 is at 6 months after randomisation, when follow-up began.

Abbreviation: CI - confidence interval, ATC - Anatomical Therapeutic Chemical code